The New York City Metropolitan Transportation Authority (MTA) has partnered with Google for a groundbreaking pilot project designed to enhance the dependability of its outdated subway network. Utilizing Google’s smartphone technology, this initiative aims to detect and resolve track problems proactively to prevent service interruptions. Called “TrackInspect,” the program marks a major advancement in incorporating artificial intelligence and contemporary technology into public transportation.
The Metropolitan Transportation Authority (MTA) in New York City has teamed up with Google in an innovative pilot project aimed at improving the reliability of its aging subway system. By leveraging Google’s smartphone technology, the initiative seeks to identify and address track issues before they lead to service disruptions. Known as “TrackInspect,” the program represents a significant step forward in integrating artificial intelligence and modern technology into public transit.
“By spotting initial indicators of track deterioration, we not only cut down on maintenance expenses but also lessen inconveniences for passengers,” stated Demetrius Crichlow, president of New York City Transit, in an announcement made public in late February.
“By identifying early signs of track wear and tear, we not only reduce maintenance costs but also minimize disruptions for riders,” said Demetrius Crichlow, president of New York City Transit, in a statement released in late February.
Addressing delays through AI and smartphones
Subway delays continue to be a constant issue for those traveling in New York City. Towards the end of 2024, the MTA documented tens of thousands of delays monthly, with numbers surpassing 40,000 in just December. These interruptions stem from numerous causes, such as track flaws, construction activities, and shortages of crew members.
The TrackInspect initiative focuses on tackling a crucial element of the problem: pinpointing and correcting mechanical issues before they worsen. Throughout the pilot phase, six Google Pixel smartphones were placed in four R46 subway cars, recognizable by their unique orange and yellow seats. These devices captured 335 million sensor readings, more than one million GPS points, and 1,200 hours of audio data.
The smartphones were strategically located both inside and beneath the subway cars. The external devices were fitted with microphones to record both sound and vibrations, whereas the internal phones had their microphones deactivated to ensure passenger conversations weren’t recorded. These internal devices focused exclusively on capturing vibrations to identify any irregularities in the tracks.
Rob Sarno, un asistente del jefe de vías de la MTA, desempeñó un papel crucial en el proyecto. Sus tareas incluían examinar los fragmentos de audio señalados por el sistema de inteligencia artificial para detectar posibles problemas en las vías. “El sistema destacó áreas con niveles de decibelios anormales, lo que podría sugerir uniones sueltas, rieles dañados, u otros defectos,” explicó Sarno.
Rob Sarno, an assistant chief track officer with the MTA, played a key role in the project. His responsibilities included reviewing audio clips flagged by the AI system to identify potential track issues. “The system highlighted areas with abnormal decibel levels, which could indicate loose joints, damaged rails, or other defects,” Sarno explained.
The A train line, chosen for the pilot, offered a diverse testing environment with both underground and above-ground tracks. It also included sections of recently constructed infrastructure, providing a baseline for comparison. While not all delays on the A line are caused by mechanical issues, the data captured during the pilot could help address recurring problems and improve overall service.
Promising results but hurdles remain
The initiative also featured an AI-driven tool based on Google’s Gemini model, enabling inspectors to inquire about maintenance procedures and repair records. This conversational AI furnished inspectors with straightforward, actionable insights, which further streamlined the maintenance workflow.
A pesar de su éxito, el programa piloto plantea dudas sobre su escalabilidad y coste. La MTA no ha revelado cuánto costaría implementar TrackInspect en todo su sistema de metro, que abarca 472 estaciones y atiende a más de mil millones de pasajeros cada año. La agencia ya se enfrenta a desafíos financieros, necesitando miles de millones de dólares para completar proyectos de infraestructura en curso.
Despite its success, the pilot program raises questions about scalability and cost. The MTA has not disclosed how much it would cost to implement TrackInspect across its entire subway system, which includes 472 stations and serves over one billion riders annually. The agency is already grappling with financial challenges, needing billions of dollars to complete existing infrastructure projects.
An increasing movement in transit advancements
New York’s collaboration with Google is part of a wider movement where cities around the globe are utilizing artificial intelligence and smart technologies to enhance public transit systems. For instance, New Jersey Transit has employed AI to study passenger flow and manage crowds, while the Chicago Transit Authority has established AI-based security systems to identify weapons. In Beijing, facial recognition technology has been adopted as an alternative to conventional transit tickets, minimizing wait times during busy hours.
Google has previously worked with other transportation agencies. The tech company has created tools to optimize Amtrak’s scheduling and has teamed up with parking technology providers to incorporate street parking information into Google Maps. Nonetheless, the size and intricacy of New York’s subway system make this project especially ambitious.
Google itself has collaborated with other transportation agencies in the past. The tech giant has developed tools to enhance Amtrak’s scheduling and partnered with parking technology providers to integrate street parking data into Google Maps. However, the scale and complexity of New York’s subway system make this project particularly ambitious.
Future Prospects
Looking ahead
Currently, the pilot serves as an encouraging move toward updating the MTA’s operations and tackling the difficulties of an outdated transit system. By merging the knowledge of tech firms like Google with the expertise of transit professionals, New York City could potentially provide a more dependable subway experience for its millions of daily passengers.
Reflecting on the project, Sarno highlights the promise of AI-driven solutions to revolutionize public transit. “This technology enables us to identify issues sooner, act more swiftly, and ultimately offer improved service to our passengers,” he stated.
As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.
The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.